skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Calderón, F"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The observables associated with a quantum system S form a non-commutative algebra A S . It is assumed that a density matrix ρ can be determined from the expectation values of observables. But A S admits inner automorphisms a ↦ u a u − 1 , a , u ∈ A S , u * u = u u * = 1 , so that its individual elements can be identified only up to unitary transformations. So since Tr  ρ ( uau *) = Tr( u * ρu ) a , only the spectrum of ρ , or its characteristic polynomial, can be determined in quantum mechanics. In local quantum field theory, ρ cannot be determined at all, as we shall explain. However, abelian algebras do not have inner automorphisms, so the measurement apparatus can determine mean values of observables in abelian algebras A M ⊂ A S ( M for measurement, S for system). We study the uncertainties in extending ρ | A M to ρ | A S (the determination of which means measurement of A S ) and devise a protocol to determine ρ | A S ≡ ρ by determining ρ | A M for different choices of A M . The problem we formulate and study is a generalization of the Kadison–Singer theorem. We give an example where the system S is a particle on a circle and the experiment measures the abelian algebra of a magnetic field B coupled to S . The measurement of B gives information about the state ρ of the system S due to operator mixing. Associated uncertainty principles for von Neumann entropy are discussed in the appendix, adapting the earlier work by Białynicki-Birula and Mycielski (1975 Commun. Math. Phys. 44 129) to the present case. 
    more » « less